2(3x-4)+(x^2+28)=180

Simple and best practice solution for 2(3x-4)+(x^2+28)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3x-4)+(x^2+28)=180 equation:



2(3x-4)+(x^2+28)=180
We move all terms to the left:
2(3x-4)+(x^2+28)-(180)=0
We multiply parentheses
6x+(x^2+28)-8-180=0
We get rid of parentheses
x^2+6x+28-8-180=0
We add all the numbers together, and all the variables
x^2+6x-160=0
a = 1; b = 6; c = -160;
Δ = b2-4ac
Δ = 62-4·1·(-160)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-26}{2*1}=\frac{-32}{2} =-16 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+26}{2*1}=\frac{20}{2} =10 $

See similar equations:

| 25/4=x/6 | | -25+5=7p+3p | | d-84=9 | | 800+1w=2000 | | 14p-6p-2p-3p-p=8 | | 5x+3(-5-7)=-1-5(2x+4) | | (1/4x)+5=11/4x | | q-30=69 | | 12x-50=x | | x²-16x+64=100 | | 2x+x(x-3)=6x | | 3m-11.8=31 | | 1/4(y-1)=7 | | 14/21=y/9 | | p(0)=10 | | -3.6=1.2+x/3 | | 8x-3=2(x-1/2 | | 7x+3=-9x+8 | | -6(n+3)=12 | | U=-4+4a | | -78=-8(2+22x)-x+177x-62 | | 6=(4c) | | -3x+4=5x-20 | | 13x-26+5x+8=180 | | p(0)=-10 | | 2t-5+4t=61 | | v-1/2=9/8 | | g-6=45 | | 18x-216=360 | | 14/21=a/9 | | 18/5=13/n | | (15-2x)1/2=X |

Equations solver categories